Phase-response curves give the responses of neurons to transient inputs.

نویسندگان

  • Boris S Gutkin
  • G Bard Ermentrout
  • Alex D Reyes
چکیده

Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute phase-response curves (PRCs). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in timing of spikes caused by an EPSP in a repetitively firing neuron as a function of when it arrives in the interspike interval (ISI). The PRC can be exactly related to the poststimulus time histogram (PSTH) so that knowledge of one uniquely determines the other. Typically, PRCs have zero values at the start and end of the ISI, where EPSPs have minimal effects and a peak in the middle. Where the peak occurs depends in part on the firing properties of neurons. The PRC can have regions of positivity and negativity corresponding respectively to speeding up and slowing down the time of the next spike. A simple canonical model for spike generation is introduced that shows how both the background firing rate and the degree of postspike afterhyperpolarization contribute to the shape of the PRC and thus to the PSTH. PRCs in strongly adapting neurons are highly skewed to the right (indicating a higher change in probability when the EPSPs appear late in the ISI) and can have negative regions (indicating a decrease in firing probability) early in the ISI. The PRC becomes more skewed to the right as the firing rate decreases. Thus at low firing rates, the spikes are triggered preferentially by inputs that occur only during a small time interval late in the ISI. This implies that the neuron is more of a coincidence detector at low firing frequencies and more of an integrator at high frequencies. The steady-state theory is shown to also hold for slowly varying inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat

Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal ‎horn is well described, the midbrain neural basis underlying each phase of behavior in ‎formalin test has not been clarified. The present study was designed to investigate the nucleus ‎cuneiformis (CnF)‎‏ ‏neuronal responses during two phases after subcutaneous injection of ‎formalin into the hind paw...

متن کامل

Somatovisceral interactions in the rat dorsal column nuclei

Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...

متن کامل

Somatovisceral interactions in the rat dorsal column nuclei

Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...

متن کامل

Phase Response Curves Determine the Responses of Neurons to Transient Inputs

Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute Phase-Response Curves (PRC). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in ...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2005